本文讨论一类体积填充趋化模型(*)的不稳定常数平衡解附近的非线性动力学性态.研究表明{Ut=(d1U-χU(1-U/γ)V),(*)Vt=d22V+U-V,对任意给定的一般初始扰动δ,在以lnδ-1为阶的时间段内,该扰动的非线性演化由相应的线性化系统的最快增长模式所控制,并对斑图生成进行定量的刻画.
In this paper, we deal with the Neumann initial-boundary value problem in a d-dimen- sional box T^d=(0,π)^d( = 1,2,3) for a volume-filling chemotaxis system {Ut=(d1U-χU(1-U/γ)V),(*)Vt=d22V+U-V. Nonlinear dynamics near an unstable constant equilibrium in (*) is considered. It is proved that for any given general perturbation of magnitude δ, linear fastest growing modes determine the nonlinear evolution for the model (*) over a time period of the order In δ-1. Our result provides a rigorous mathematical description for the pattern formation in the model (*).