A simple experimental method was introduced to study the mechanical properties of reinforced concrete under shock loading. The one-stage light gas gun was used to test the mechanical properties of reinforced concrete with different reinforcement ratios under various impact velocities. Three Mn-Cu piezoresistive pressure gauges embedded in the target were used to record the voltage-time signals, from which the stress-strain curves of reinforced concrete were obtained using Lagrangian analysis. Experimental results indicated that the load-bearing capacities of reinforced concrete increased greatly with the impact velocity and the reinforcement ratio. The peak stress of the shock wave decreased exponentially with the propagation distance.
A simple experimental method was introduced to study the mechanical properties of reinforced concrete under shock loading. The one-stage light gas gun was used to test the me- chanical properties of reinforced concrete with different reinforcement ratios under various impact velocities. Three Mn-Cu piezoresistive pressure gauges embedded in the target were used to record the voltage-time signals, from which the stress-strain curves of reinforced concrete were obtained using Lagrangian analysis. Experimental results indicated that the load-bearing capacities of re- inforced concrete increased greatly with the impact velocity and the reinforcement ratio. The peak stress of the shock wave decreased exponentially with the propagation distance.