位置:成果数据库 > 期刊 > 期刊详情页
弹性粗粒度动态弯曲时序相似性算法
  • ISSN号:1001-9081
  • 期刊名称:《计算机应用》
  • 时间:0
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南昌大学软件学院,南昌330047, [2]同济大学计算机科学与技术系,上海201804
  • 相关基金:国家自然科学基金资助项目(61070139,61273304)
中文摘要:

针对动态时间弯曲(DTW)算法在提高计算速度同时不能兼顾分类正确率的问题,提出了一种基于朴素粒计算思想的弹性粗粒度动态时间弯曲(CG-DTW)算法。首先,通过计算时序方差特征的方法来获取较优的时序粒度,用粒度特征代替原始序列;其次,再代入执行DTW算法,允许动态调整被比较时序粒间的弹性大小,从而获得相对最优的时序对应粒;最后,在对应最优粒的情况下计算DTW距离。同时引入下界函数的提前终止策略进一步提高CG-DTW算法效率。实验结果表明,所提算法要比经典算法运行速率提高21.4%左右,比降维策略算法正确率提高近32.3个百分点,尤其是长序列的分类,CG-DTW能够在保持正确率的情况下兼顾较高的运行效率。CG-DTW在实际应用中能适应不确定长序列分类。

英文摘要:

The Dynamic Time Warping( DTW) algorithm cannot keep high classification accuracy while improving the computation speed. In order to solve the problem,a Coarse-Granularity based Dynamic Time Warping( CG-DTW) algorithm based on the idea of naive granular computing was proposed. First of all,the better temporal granularities were obtained by computing temporal variance features,and the original series were replaced by granularity features. Then,the relatively optimal corresponding temporal granularity was obtained by executing DTW with dynamically adjusting intergranular elasticity of granularities compared. Finally,the DTW distance was calculated in the case of the corresponding optimal granularity.During this progress,an early termination strategy of lower bound function was introduced for further improving the CG-DTW algorithm efficiency. The experimental results show that,the proposed algorithm was better than classical algorithm in running rate with increasing by about 21. 4%,and better than dimension reduction strategy algorithm in accuracy with increasing by about 32. 3 percentage points. Especially for the long time sequences classification,CG-DTW takes consideration into both high computing speed and better classification accuracy. In actual applications,CG-DTW can adapt to long time sequences classification with uncertain length.

同期刊论文项目
期刊论文 33 会议论文 4
同项目期刊论文
期刊信息
  • 《计算机应用》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术协会
  • 主办单位:四川省计算机学会中国科学院成都分院
  • 主编:张景中
  • 地址:成都市人民南路四段九号科分院计算所
  • 邮编:610041
  • 邮箱:xzh@joca.cn
  • 电话:028-85224283
  • 国际标准刊号:ISSN:1001-9081
  • 国内统一刊号:ISSN:51-1307/TP
  • 邮发代号:62-110
  • 获奖情况:
  • 全国优秀科技期刊一等奖,国家期刊奖提名奖,中国期刊方阵双奖期刊,中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:53679