Three different punches are designed for the hydropiercing experiments and finite element simulations are conducted by finite element program ABAQUS-3D to investigate the influence of punch shape on the fracture surface quality of hydropiercing holes. The results show the fracture burrs are not obvious punched by all the three punches. The collapse punched by the round punch is a little larger than the others. The fracture surface quality punched by the round punch is good with larger smooth zone and the interface between smooth zone and tear zone is even with large gradient. The size of the smooth zone is larger and the interface between smooth zone and tear zone is uneven with large gradient punched by the flat punch. The size of the smooth zone is smaller and the size of the tear zone increases from the first fractured to the last fractured punched by the inclined punch.
Three different punches are designed for the hydropiercing experiments and finite element simulations are conducted by finite element program ABAQUS-3D to investigate the influence of punch shape on the fracture surface quality of hydropiercing holes. The results show the fracture burrs are not obvious punched by all the three punches. The collapse punched by the round punch is a little larger than the others. The fracture surface quality punched by the round punch is good with larger smooth zone and the interface between smooth zone and tear zone is even with large gradient. The size of the smooth zone is larger and the interface between smooth zone and tear zone is uneven with large gradient punched by the flat punch. The size of the smooth zone is smaller and the size of the tear zone increases from the first fractured to the last fractured punched by the inclined punch.