位置:成果数据库 > 期刊 > 期刊详情页
集成物理统计模型在南海夏季风预测中的应用
  • ISSN号:1001-7313
  • 期刊名称:《应用气象学报》
  • 时间:0
  • 分类:P426.613[天文地球—大气科学及气象学]
  • 作者机构:中国气象局广州热带海洋气象研究所/广东省区域数值天气预报重点实验室,广州510641
  • 相关基金:国家重点基础研究发展计划(2014CB953901),广州市科技计划项目(201607010153),国家自然科学基金项目(41375095,41505067,41575043,41675096)和广东省气象局科技研究项目(2013807)
中文摘要:

利用影响南海夏季风年际变化的主要气候现象厄尔尼诺-南方涛动(El Nino-Southern Oscillation,ENSO)和对流层准两年振荡(Tropospheric Biennial Oscillation,TBO)相关的气候因子,提出了以过程判别函数确定物理过程的持续性,建立年际尺度的集成物理统计预测模型,而非年际尺度变率由经验统计模型预测,二者相结合,发展了集成物理-经验统计预测模型。经验模型在拟合时段的回报结果很好,但在独立样本预测时效果明显降低,其中预测评分(PS)降低了23%,距平相关系数(ACC)降低了63%;相比之下,集成物理-经验统计预测模型在独立样本预测时比经验模型有更好的预测结果(PS评分提高了9.5%,ACC提高了75%),且预测结果相对稳定。此外,集成物理-经验统计预测模型对南海夏季风降水的空间分布也有一定预测能力。

英文摘要:

The South China Sea summer monsoon (SCSSM) is flood season of South China. However, the prediction of namic or statistic methods, Statistic methods are used in a tropical system that plays a key role during the the SCSSM strength is difficult by no matter dypractice rather than dynamic model, but empirical-statistic models always have good hindcasting results during the period of building model, while the forecasting skills decrease evidently in practice. Physical-statistic methods have relatively stable predictive skill when the persistence of physical processes is taken into account. Therefore, an integrated technique is introduced based on associated physical processes to establish a predictive model for SCSSM. It is well known that the rainfall of SCSSM has multi-scale climate variability, for example, quasi-biennial and qua- si-quadrennial time scale, which are mainly related to TBO (Tropospheric Biennial Oscillation) and ENSO (El Nino-Southern Oscillation), respectively. Based on the corresponding climatic factors, a physical-statistic integrated model is built. Combined with the traditional empirical-statistic method, a new prediction model (namely physical and empirical-statistic integrated model) for SCSSM is developed. First, original data are processed by removing the climatic state (1981--2010) and linear trend, and then anomalous data are filtered on the TBO (12--36 months) and ENSO (36--96 months) time scales since the biennial mode of SCSSM has little connection with the ENSO. Second, regressed results based on climatic factors (e. g. , sea surface temperature anomalies in Nino3.4 and the tropical western Pacific, precipitation anomalies over the maritime continent and Australian monsoon region) are assembled according to a discrimination function that is correlation coefficient larger than 0. 05 significant level between regressed results and the filtered SCSSM precipitation. Moreover, the rest precipitation with SCSSM interannual variations removed is predicted by

同期刊论文项目
同项目期刊论文
期刊信息
  • 《应用气象学报》
  • 中国科技核心期刊
  • 主管单位:中国气象局
  • 主办单位:中国气象科学研究院 国家气象中心 国家卫星气象中心 国家气候中心 国家气象信息中心 中国气象局大气探测技术中心
  • 主编:张人和
  • 地址:北京海淀区中关村南大街46号中国气象科学研究院
  • 邮编:100081
  • 邮箱:yyqxxb@camscma.cn ;yyqxxb@163.com
  • 电话:010-68407086 68408638
  • 国际标准刊号:ISSN:1001-7313
  • 国内统一刊号:ISSN:11-2690/P
  • 邮发代号:
  • 获奖情况:
  • 1992年北京市新闻出版局、北京市科技期刊编辑学会...,1995年获中国气象科学研究院科技进步二等奖
  • 国内外数据库收录:
  • 美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:23265