位置:成果数据库 > 期刊 > 期刊详情页
基于自身特征扩展的短文本分类方法
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP391.1[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:合肥工业大学计算机与信息学院,合肥230009
  • 相关基金:国家自然科学基金资助项目(61503112,61305063,61673152)
中文摘要:

短文本具有特征稀疏、描述概念信号弱等特点,传统方法对短文本进行分类很难取得较好结果。针对上述问题,提出了一种基于自身特征扩展的短文本分类方法 SC-FE。该方法首先基于类内离散度从每个类中选取高类别指示性的特征组成特征空间;其次对样本的特征,在已选的特征空间中选取其相关度最大的特征加入短文本中进行扩充。在实际数据集上的实验结果表明,该方法可有效提高短文本的分类效果。

英文摘要:

Short text is characterized of the sparseness and the weak description of concept, the traditional method of short text classification is difficult to achieve good results. Motivated by this, this paper proposed a short text classification method SC- FE based on extension with its own features. Firstly, it composed a feature space by selecting the features with high indicative ability. Secondly, for each feature in a text, the method selected the most similar feature to expand the short text. Experimental results conducted on real data sets show that the method can effectively improve the effect of the short text classification.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049