利用超声分子束技术、同步辐射和反射式飞行时间质谱仪得到了Kr和Kr2的光电离质谱和光电离效率谱,确定了Kr和Kr2的电离能,利用Gaussian-03程序中的MP2(Full)/6—31G^*,QCISD/cc—pVTZ以及B3LYP/6—31G方法优化了Kr2的结构,计算了它们的振动频率和电离能,计算结果显示:当采用相同的理论水平和基组时,随着Kr同位素质荷比(m/z)的增大,它们结构和电离能保持不变,而振动频率逐渐变小.与此同时,用G2方法计算了Kr(84)和Kr2(168)的电离能。它们的电离能的理论值与实验结果符合得比较好.
The photoionization mass spectroscopy (PIMS) and photoionization efficiency spectroscopy (PIES) of Kr and Kr2 have been obtained using a supersonic molecule beam, synchrotron radiation and reflection time of flight mass spectrum. The ionization energies of Kr and Kr2 were determined from their PIES. The geometries, harmonically vibrational frequencies, and ionization energies of Kr2 have also been calculated using MP2(Full)/6-31G^*, QCISD/cc-pVTZ and B3LYP/6-31G. When the same level of theory was used, the structure and ionization energy were nearly unchanged, and the vibrational frequency was decreased gradually with increasing m/z of Kr isotope. At the same time, the ionization energies of Kr (84) and Kr2 (168) were calculated using a G2 method. The theoretical values of the ionization energy are in agreement with those experimental ones.