本文改进了R iccati传递矩阵法并将其扩展应用于分析强非线性转子——轴承系统的动力响应。提出了一种新型的传递向量{f^T┇.e^T,1}={f^T┇e*^T}^T和新的变换{f}=[S*].{.e*},简化了Riccati传递矩阵法,并提高了R iccati传递矩阵法的数值稳定性。文中就一强非线性转子-轴承系统,分别用本文的方法和Runge-Kutta法做了计算。通过理论分析和两算法结果的比较,验证了本文方法的有效性和数值稳定性等多种优点。本法特别适合于分析强非线性大型复杂转子-轴承系统的瞬态响应。
We improve the Riccati transfer matrix technique and apply it to the transient response analysis of high nonlinear rotor-bearing systems. We propose a new transfer vector and a novel transform, thus simplifying the Riccati transfer matrix technique and enhancing its numerical stability. Furthermore we use our technique and the Runge-Kutta technique to compute high nonlinear rotor-bearing systems. Theoretical analysis and the comparison of computation results using the two techniques verify the effectiveness and numerical stability of our method. Our method is particularly suitable for the transient response analysis of high nonlinear rotor-bearing systems of large-scale.