这篇论文为随机的冲动的微分方程学习存在和唯一。作者首先概括 Schaefers 类型的一条随机的固定的点定理。然后,作者将依靠概括 Schaefers 类型随机讨论系统的存在的固定的点定理。另外,作者由使用修理的随机的 Banach 学习随机的冲动的微分方程的存在和唯一削尖定理并且获得一些不太保守的结果。最后,一个例子被给说明结果的有效性。
This paper studies existence and uniqueness for random impulsive differential equations. The authors first generalize a random fixed point theorem of Schaefer's type. Then the authors shall rely on the generalized Schaefer's type random fixed point theorem to discuss the existence of the system. In addition, the authors study the existence and uniqueness of random impulsive differential equations by applying random Banach fixed point theorem and obtain some less conservative results. Finally, an example is given to illustrate the effectiveness of the results.