位置:成果数据库 > 期刊 > 期刊详情页
基于约简支持向量机的快速入侵检测算法
  • ISSN号:1000-565X
  • 期刊名称:《华南理工大学学报:自然科学版》
  • 时间:0
  • 分类:TP393.08[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]华东理工大学信息科学与工程学院,上海200237, [2]杭州师范大学电子商务与信息安全重点实验室,浙江杭州310036
  • 相关基金:国家自然科学基金资助项目(60773094); 杭州市电子商务与信息安全重点实验室开放课题项目(HZEB201009)
中文摘要:

标准支持向量机(SVM)算法受时间和空间复杂度约束,无法有效地处理大规模网络入侵检测问题.文中基于SVM的几何解释,提出了一种基于并行凸包分解计算和支持向量机的入侵检测分类算法(PCH-SVM).该算法借助凸包的分解和并行计算快速提取训练样本空间几何凸包的顶点,构建约简SVM训练样本集.实验结果表明,该算法可以在不造成精度损失的前提下,降低SVM训练的时空复杂度,加速入侵检测分类器的建模和检测.

英文摘要:

Owing to the constraints of time and space complexity,the standard SVM(Support Vector Machine) algorithm cannot effectively deal with large-scale network intrusion detection.In order to solve this problem and in view of the geometric interpretation of SVM,an intrusion detection classification algorithm named PCH-SVM is proposed based on the parallel convex hull decomposition and the SVM.With the help of convex hull decomposition and parallel computing,this algorithm can fast extract the vertices of convex hull of the original training samples to build a reduced SVM training set.Experimental results show that the proposed algorithm can effectively reduce the time and space complexity during SVM training,and speeds up the modeling and detection of intrusion detection classifier without any accuracy loss.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《华南理工大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:国家教育部科技司
  • 主办单位:华南理工大学
  • 主编:李元元
  • 地址:广州市天河区五山路华南理工大学17号楼
  • 邮编:510640
  • 邮箱:journal@scut.edu.cn
  • 电话:
  • 国际标准刊号:ISSN:1000-565X
  • 国内统一刊号:ISSN:44-1251/T
  • 邮发代号:46-174
  • 获奖情况:
  • 本学报荣获1996年国家教委系统优秀科技期刊二等奖...,1999年荣获全国优秀高校自然科学学报及教育部优秀...,2001年荣获广东省优秀期刊奖和广东省优秀科技期刊...,2004年获全国高校优秀科技期刊二等奖,2006年获首届教育部优秀科技期刊奖,2008年荣获第二届教育部优秀科技期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:22954