位置:成果数据库 > 期刊 > 期刊详情页
基于扩散模型的ZnO/p-Si异质结伏安特性研究
  • ISSN号:1000-565X
  • 期刊名称:《华南理工大学学报:自然科学版》
  • 时间:0
  • 分类:TN47[电子电信—微电子学与固体电子学] TP202[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]广东农工商职业技术学院电子与信息工程系,广州510507, [2]华南理工大学电子与信息学院,广州510640
  • 相关基金:国家自然科学基金项目(60776020)资助
中文摘要:

针对传统寿命预测方法需要大量样本与现代高可靠集成电路(IC)在寿命试验中通常只有少量失效样本的矛盾,提出了基于最小二乘支持向量机(LSSVM)的指数寿命型小子样IC寿命预测方法。用蒙特卡罗方法研究了该方法在指数寿命型IC寿命预测应用中的可行性。同时与基于神经网络的预测方法相比。结果表明基于LSSVM的方法能更精确地预测小子样下IC的寿命,可为预测指数寿命型小子样IC的寿命提供一种新的有效途径。

英文摘要:

It's becoming more and more difficult to get enough failure data sample during life test of modern integrated circuit(IC).However traditional reliability assessment methods need a lot of failure data.In order to resolve this contradiction,a life prediction method of IC with small sample based on least squares support vector machine(LSSVM) is proposed.This method can be used to predict the lifetime of IC with small sample when the failure distributions are assumed to be exponential distribution.In addition,the effectiveness of LSSVM approach by Monte Carlo simulation is demonstrated.Error back propagation(BP) neural network is also compared with LSSVM method.The obtained results show that LSSVM method can be used to predict life of IC with small sample with high accuracy when dealing with failure data from exponential distribution.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《华南理工大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:国家教育部科技司
  • 主办单位:华南理工大学
  • 主编:李元元
  • 地址:广州市天河区五山路华南理工大学17号楼
  • 邮编:510640
  • 邮箱:journal@scut.edu.cn
  • 电话:
  • 国际标准刊号:ISSN:1000-565X
  • 国内统一刊号:ISSN:44-1251/T
  • 邮发代号:46-174
  • 获奖情况:
  • 本学报荣获1996年国家教委系统优秀科技期刊二等奖...,1999年荣获全国优秀高校自然科学学报及教育部优秀...,2001年荣获广东省优秀期刊奖和广东省优秀科技期刊...,2004年获全国高校优秀科技期刊二等奖,2006年获首届教育部优秀科技期刊奖,2008年荣获第二届教育部优秀科技期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:22954