位置:成果数据库 > 期刊 > 期刊详情页
面向社交媒体文本的话题检测与追踪技术研究综述
  • ISSN号:1671-8836
  • 期刊名称:《武汉大学学报:理学版》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:武汉大学计算机学院,湖北武汉430072
  • 相关基金:国家自然科学基金面上项目(61472291);国家自然科学基金青年项目(61303115);湖北省自然科学基金项目(ZRY2014000901)资助
中文摘要:

以微博、论坛等为代表的社交媒体已逐渐发展成为网络用户表达和交流观点、获取和传播信息的重要平台.然而,社交媒体文本内容具有的规模庞大、形式多样、传播迅速等特点,对传统的应用在新闻报道、舆情监控、文本挖掘、信息咨询等方面的话题检测与追踪技术提出了新的要求.针对这一背景,本文分别从离线话题检测、在线话题检测和话题演化追踪这三个方面总结当前主要的话题检测与追踪方法,分析在该领域实验中被普遍使用的评估方式,最后提出当前面临的挑战和今后的研究方向.

英文摘要:

Social media, like microblog, has gradually become a key platform for users to express and exchange views, acquire knowledge and disseminate information. However, social media text streams are usually voluminous, diversified and fast-spreading, posing new challenges for topic detection and tracking in traditional news media. This article discusses the related studies of topic detection and tracking in social media text, and classifies these studies into three main categories: offline topic detection, online topic detection, and topic evolutionary tracking. Then the widely used evaluation metrics in this field are introduced briefly as well. Finally, we summarize the major limitations of cur- rent works, and also outline directions for future research.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《武汉大学学报:理学版》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国2教育部
  • 主办单位:武汉大学
  • 主编:刘经南
  • 地址:湖北武昌珞珈山
  • 邮编:430072
  • 邮箱:whdz@whu.edu.cn
  • 电话:027-68756952
  • 国际标准刊号:ISSN:1671-8836
  • 国内统一刊号:ISSN:42-1674/N
  • 邮发代号:38-8
  • 获奖情况:
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,英国动物学记录,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:6988