把薄墙的成员理论基于 Timoshenko 鈥檚 横梁理论和 Vlasov 鈥檚 ,空间薄墙的横梁元素的一个新模型为分析几何、物理的非线性被开发,它合并一个内部节点和把角度和经纱弄弯的独立插值并且考虑多样化的因素,例如穿越砍变丑,扭力砍变丑并且他们的联合,弯曲和扭转联合,并且第二砍应力。几何非线性的种类在更新的 Lagarange (UL ) 被提出,相应僵硬矩阵被导出。非常塑料的模型被用来说明因为物理非线性,和收益 von 协定和 Prandtle 鈥揜e 的增长关系裁定 uss 被采用。Elastoplastic 僵硬矩阵被数字集成基于有限片断方法获得,并且一个有限元素程序被编译。数字例子表明建议模型在薄墙的结构的分析精确、可行。关键词空间横梁-薄墙的节-横梁元素-几何、物理的非线性-女性工程被中国( 50725826 )的国家自然科学地基支持,关于有超级跨度和博览会轴( 08dz0580303 )和上海的复杂单个壳的结构的增强电缆线的膜的特定的研究博士后的资金( 10R21416200 )。
Based on Timoshenko's beam theory and Vlasov's thin-walled member theory, a new model of spatial thin-walled beam element is developed for analyzing geometrical and physical nonlinearity, which incorporates an interior node and independent interpolations of bending angles and warp and takes diversified factors into consideration, such as traverse shear deformation, torsional shear deformation and their coupling, coupling of flexure and torsion, and the second shear stress. The geometrical nonlinear strain is formulated in updated Lagarange (UL) and the corresponding stiffness matrix is derived. The perfectly plastic model is used to account for physical nonlinearity, and the yield rule of von Mises and incremental relationship of Prandtle-Reuss are adopted. Elastoplastic stiffness matrix is obtained by numerical integration based on the finite segment method, and a finite element program is compiled. Numerical examples manifest that the proposed model is accurate and feasible in the analysis of thin-walled structures.