位置:成果数据库 > 期刊 > 期刊详情页
融合双层信息的显著性检测
  • ISSN号:1006-8961
  • 期刊名称:《中国图象图形学报》
  • 时间:0
  • 分类:TP301[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中国石油大学(华东)计算机与通信工程学院,青岛266580, [2]中国石油大学(华东)地球科学与技术学院,青岛266580
  • 相关基金:国家自然科学基金项目(61379106);山东省中青年科学家奖励基金项目(BS2010DX037);山东省自然科学基金项目(ZR2009GL014,ZR2013FM036);浙江大学CAD&CG国家重点实验室开放课题(A1315);中央高校基本科研基金项目(13CX06007A,14CX06010A,14CX06012A);中国石油大学(华东)研究生创新工程(YCX2014066)
中文摘要:

目的针对已有工作在颜色及结构显著性描述方面的缺陷,提出一种新的图像显著性检测方法。方法本文方法在不同的图像区域表达上从颜色与空间结构角度计算图像的显著性,充分考虑图像的特征与像素聚类方式之间的适应性。首先,根据颜色复杂度、边缘与连通性等信息,将图像从像素空间映射到双层区域表示空间。然后,根据两个层次空间的特性,与每个图像区域的边界特性,计算图像的结构和颜色显著度。最后,由于不同图像表示中的显著性信息存在互补性,将所有这些信息进行融合得到最终的显著性图。结果在公认的MSRA-1000数据集上验证本文方法并与目前国际上流行的方法进行对比。实验结果表明,本文方法在精确率、召回率以及绝对误差(分别为75.03%、89.39%、85.61%)等方面要优于当前前沿的方法。结论提出了一种融合双层信息的显著性检测算法。根据图像本身信息控制区域数目构建图像双层表示,提高了方法的普适性;利用图像不同层次的特性从不同角度计算显著性,增强了方法鲁棒性。

英文摘要:

Objective Image saliency detection is a method used to eliminate the redundant image information. Moreover, this method is used in many computer vision applications, such as adaptive compression of images, content-aware image editing, and image retrieval. In this study, a new image saliency detection method is proposed to compute for image saliency from different perspectives. In fact, many methods are used to compute for saliency, and most of these approaches use different types of features to detect saliency in single regional representation. However, only a few methods consider the adaptability between the feature and image representation. Method According to the different characters of different types of regional representations, we compute image saliency from different angles by using a wide variety of information, including color. The method consists of three basic steps. First, the image is mapped from the pixel space to a two-layer regional representation space on the basis of connectivity and edge information. The first layer is related to the spatial structure of the image, whereas the second one is superior in describing color information. Then, on the basis of the diverse properties of the constructed two-layer representations, we adopt a number of features to abstract image saliency. In the first layer, we use the spatial distribution of region in the image and the structure feature to obtain the spatial structure saliency. In the second layer, we use the color feature to compute for color saliency. Given the complementarity between the two kinds of saliency, the last step is to integrate the two kinds to obtain the final saliency map. In practice, color saliency has higher significance and discriminative power than spatial structure saliency. Thus, we use an exponential function to combine the two kinds of saliency while highlighting color saliency. In addition, the boundary prior is also a reasonable and popular method for enhancing saliency detection and has thus been widely used for image salienc

同期刊论文项目
同项目期刊论文
期刊信息
  • 《数码影像》
  • 主管单位:
  • 主办单位:中国图象图形学学会 中科院遥感所 北京应用物理与计算数学研究所
  • 主编:
  • 地址:北京市海淀区花园路6号
  • 邮编:100088
  • 邮箱:
  • 电话:010-86211360 62378784
  • 国际标准刊号:ISSN:1006-8961
  • 国内统一刊号:ISSN:11-3758/TB
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:0