设g(z)是个整函数,如果g(z)=∑cvznv(*)其中nv是一列非负递增整数且满足间断条件vnv→0(v→∞)(**)则称g(z)为Fabry间断级数。证明了:设A是有穷级超越整函数且满足条件(*)和(**),则对于方程f″+A(z)f=0的任意两个线性无关的解,有max{λ(f1),λ(f2)}=∞。这个结果证实了著名的Bank-Laine猜想当A是Fabry间断级数的情形。
An entire function gis called a Fabrg gap series if g(z)=∑cvznv(*) with {nv} an increasing sequence of non-negative integers satisfging the gap condition v nv→0(v→∞)(**) In this papers,it proves that let A be a transcendental entire function of finite order and satisty(*) and(**),then max{λ(f1),λ(f2)}=∞ for ang two linearly indenpent solutions of f″+A(z)f=0 This can affirm a well-known conjecture of S.Bankand I.Laine for the case that A is a Fabry gap series.