针对复杂场景下运动目标的精确检测这一问题,提出一种对噪声鲁棒并具备灰度尺度不变性的局部纹理特征描述子LBP_Center,将其与像素的颜色信息结合应用于背景建模中,采用随机抽样的机制更新模型,同时引入背景复杂度以去除多模态动态背景产生的噪点。在标准测试数据集上的实验结果表明,该算法对柔性阴影及光照缓慢变化具备良好的鲁棒性,综合性能更优。
Focusing on the precise detection of moving objects, we propose a new local texture descriptor--LBP_Center, which is robust to noise and invariant to gray scale. And together with the color information of pixels we apply it to the background model. Then we update the model by random sampiing and introduce background complexity to remove the noise of the multimode dynamic background. Experimental results on standard testing datasets indicate that the new method has good robustness to soft project shadows and slow illumination change, and better comprehensive performance in comparison with other algorithms.