G=(V,E)表示一个顶点集为V,边集为E的有限简单无向图.若存在映射Φ:V(G)→Zk(n)(Zk(n)是由{1,2,…,n}的所有k-元子集构成的集合),满足:Vuv∈E(G),有Φ(u)∩Φ(v)=Φ,则称Φ是G的一个k-重n-顶点染色.本文证明了奇围长至少为5k-7(k=4)或5k-9(k=6)的平面图G是k-重(2k+2)-可染的.
Let G=(V,E) be a finite,simple and undirected graph with the set of vertices V, and the set of edges E.A k-fold n-coloring of a graph G is a mappingφ:V(G)→Zk(n) (Zk(n) is the collection of all k-subsets of {1.2.…,n} ),such that:Vuv∈E(G),there isφ(u)∩φ(v)=φ,then say G is k-fold n-colorable.We show that every planar graph with odd girth at least 5k-7(k=4) or 5k-9(k=6) can be k-fold(2k+2)-colorable.