The jacket structure has become more popular as the offshore wind-turbine support structure. K-type and inverted-K-type jacket support structures have superior potential due to their fewer joints and lower cost of manufacture and installation. A numerical study was presented on the dynamic responses of K-type and inverted-K-type jacket support structures subjected to different kinds of dynamic load. The results show that the inverted-K-type jacket structure has higher natural frequencies than the K-type. The wave force spectrum response shows that the maximum displacement of the K-type jacket structure is larger than that of the inverted-K-type. The time-history responses under wind and wave-current load indicate that the inverted-K-type jacket structure shows smaller displacement and stress compared with the K-type, and presents different stress concentration phenomena. The dynamic responses reveal that the inverted-K-type of jacket support structure has greater stiffness and superior mechanical properties, and thus is more applicable in the offshore area with relatively deep water.
The jacket structure has become more popular as the offshore wind-turbine support structure. K-type and inverted-K-type jacket support structures have superior potential due to their fewer joints and lower cost of manufacture and installation. A numerical study was presented on the dynamic responses of K-type and inverted-K-type jacket support structures subjected to different kinds of dynamic load. The results show that the inverted-K-type jacket structure has higher natural frequencies than the K-type. The wave force spectrum response shows that the maximum displacement of the K-type jacket structure is larger than that of the inverted-K-type. The time-history responses under wind and wave-current load indicate that the inverted-K-type jacket structure shows smaller displacement and stress compared with the K-type, and presents different stress concentration phenomena. The dynamic responses reveal that the inverted-K-type of jacket support structure has greater stiffness and superior mechanical properties, and thus is more applicable in the offshore area with relatively deep water.