通过在任意给定的凸四边形和三角形上构造一个不同于通常欧氏度量的度量,证明了如果把构造经典Sierpinski地毯的初始图形正方形换成任意一个凸四边形或者三角形,则得到的广义Sierpinski地毯与经典的Sierpinski地毯具有相同的Hausdorff维数.
In this paper, we show that the general Sierpinski carpets with initial convex quadrilateral patterns and triangle patterns and the classical Sierpinski carpet have same Hausdorff dimension by constructing a metric that is distinct to Euclidean metric.