位置:成果数据库 > 期刊 > 期刊详情页
基于高斯过程分类器的三维模型多粒度语义检索
  • ISSN号:1003-6059
  • 期刊名称:《模式识别与人工智能》
  • 时间:0
  • 分类:TP391.9[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]浙江大学计算机科学与技术学院计算机科学与工程学系,杭州310027, [2]中国计量学院信息工程学院计算机科学与技术系,杭州310018, [3]浙江工业大学计算机学院计算机科学与技术系,杭州310014
  • 相关基金:国家自然科学基金项目(No.60703001)、国家973计划项目(No.2009CB320804)、广东省教育部产学研结合项目(No.20108090400193)和浙江省教育厅科研项目(No.Y200702635)资助
中文摘要:

为解决三维模型语义检索中用户检索意图不一致问题,建立多粒度语义检索框架,使学习模型能够有效地适应用户的不同检索意图.首先对模型分类知识进行层次划分,形成语义概念的多粒度结构.然后提取一种多视图特征来描述三维模型的形状特性,并采用高斯过程分类器建立不同粒度层次上的学习模型,实现低层特征和查询概念之间的语义一致性描述.和已有研究相比,多粒度语义检索框架使用户可通过语义粒度级别变化进行检索意图设置,从而检索结果尽可能符合用户语义.在实验部分,采用三维模型基准数据库对框架进行算法性能测试.结果表明,检索准确率要明显提高,并且符合人类思维特点.

英文摘要:

In order to solve the inconsistency between users' intentions in semantic 3 D model retrieval system, a retrieval framework with multi-granular semantics is established, in which learning model can adapt to different user search intentions. Firstly, model classification is divided into different levels and the multi- granularity structure of semantic concept is formed. Then, a hybrid shape feature based on views is used to describe the shape characteristics of 3D model. And the Gaussian process classifier is used to associatelow-level features with query concepts on a different level of semantic concept. Compared with existing research, the retrieval framework with multi-granular semantics allows the users to set their retrieval intentions according to selecting the granular level of semantics, and the results meet the user semantics as much as possible. The experimental results of retrieval performance evaluation using the benchmark show that the retrieval performance using proposed method is significantly higher than content-based retrieval and confident with human concept.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《模式识别与人工智能》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会 中国自动化学会
  • 主办单位:国家智能计算机研究开发中心 中国科学院合肥智能机械研究所
  • 主编:郑南宁
  • 地址:安徽省合肥市蜀山湖路350号中国科学院合肥智能机械研究所
  • 邮编:230031
  • 邮箱:bjb@iim.cas.cn
  • 电话:0551-5591176
  • 国际标准刊号:ISSN:1003-6059
  • 国内统一刊号:ISSN:34-1089/TP
  • 邮发代号:26-69
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:10169