位置:成果数据库 > 期刊 > 期刊详情页
在线生物文献磁共振图像识别方法
  • ISSN号:1000-3428
  • 期刊名称:《计算机工程》
  • 时间:0
  • 分类:TP393[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]浙江大学计算机科学与技术学院,杭州310027, [2]河池学院计算机与信息科学系,广西宜州546300
  • 相关基金:浙江省自然科学基金资助项目(Y1101359)
中文摘要:

为实现在线生物文献磁共振成像(MRI)图像库的构建,利用图像特征的塔式梯度方向直方图(PHOG)和塔式关键词直方图(PHOW)进行互补特征表示,使用支持向量机对MRI图像与非MRI图像以及脑部MRI与非脑部MRI图像进行自动分类。实验结果表明,空间形状信息与局部分布信息融合的特征能提高图像分类的准确率,为构建在线文献中MRI图像库的知识系统提供技术支持。

英文摘要:

In order to construct the Magnetic Resonance Imaging(MRI) database from online literature, MRI image recognition and brain MRI recognition are studied. In this paper, two complementary features, Pyramid Histogram of Orientated Gradients(PHOG) and Pyramid Histogram of Words(PHOW) are adopted to extract and describe the features of images. An improved Support Vector Machine(SVM) classifier based on feature fusion which combines spatial shape and local distribution information is proposed. Experimental result shows a significant improvement in the average accuracy of the fusion classifier as compared with classifiers only based on PHOG or PHOW. It provides a foundation of building a knowledge base system that can interpret MRI images in online articles.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华东计算技术研究所 上海市计算机学会
  • 主编:游小明
  • 地址:上海市桂林路418号
  • 邮编:200233
  • 邮箱:ecice06@ecict.com.cn
  • 电话:021-64846769
  • 国际标准刊号:ISSN:1000-3428
  • 国内统一刊号:ISSN:31-1289/TP
  • 邮发代号:4-310
  • 获奖情况:
  • 1999~2000、2001~2002年度信息产业部优秀期刊奖,2003-2004、2005-2006年度信息产业部电子精品科技...,2007-2008、2009-2010年度工业和信息产业部电子精...,012年度中国科技论文在线优秀期刊一等奖,2013年度中国科技论文在线优秀期刊二等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:84139