位置:成果数据库 > 期刊 > 期刊详情页
Lp范数约束的多核半监督支持向量机学习方法
  • ISSN号:1000-9825
  • 期刊名称:《软件学报》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]软件工程国家重点实验室(武汉大学计算机学院),湖北武汉430072, [2]桂林航天工业学院信息工程系,广西桂林541004
  • 相关基金:国家自然科学基金(60975050);广东省省部产学研结合专项(20118090400477);珠海市产学研合作专项资金(2011A050101005,2012D0501990016);珠海市重点实验室科技攻关项目(2012D0501990026);中央高校基本科研业务费专项资金(2012211020209);桂林航天工业学院科研基金(Y1220281
中文摘要:

在机器学习领域,核方法是解决非线性模式识别问题的一种有效手段.目前,用多核学习方法代替传统的单核学习已经成为一个新的研究热点,它在处理异构、不规则和分布不平坦的样本数据情况下,表现出了更好的灵活性、可解释性以及更优异的泛化性能.灶合有监督学习中的多核学习方法,提出了基于上。范数约束的多核半监督支持向量机(semi-supervised support vector machine,简称S^3VM)的优化模型.该模型的待优化参数包括高维空间的决策函数厶和核组合权系数靠.同时,该模型继承了单核半监督支持向量机的非凸非平滑特性.采用双层优化过程来优化这两组参数,并采用改进的拟牛顿法和基于成对标签交换的局部搜索算法分别解决模型关于厶的非平滑及非凸问题,以得到模型近似最优解.在多核框架中同时加入基本核和流形核,以充分利用数据的几何性质.实验结果验证了算法的有效性及较好的泛化性能.

英文摘要:

Kernel method is an effective approach to solve the nonlinear pattern recognition problems in the field of machine learning. At present, multiple kernel method has become a new research focus. Compared with the traditional single kernel method, multiple kernel method is more flexible, more interpretable and has better generalization performance when dealing with heterogeneous, irregular and non-fiat distribution samples. A multi-kernel S3VM optimization model based on Lp norm constraint is presented in this paper in accordance with kernel method of supervised learning. Such model has two sets of parameters including decision functions fm in reproducing kernel Hilbert space and weighted kernel combination coefficients, and inherits the non-smooth and non-convex properties from single-kernel based S3VM. A two-layer optimization procedure is adopted to optimize these two groups of parameters, and an improved Quasi-Newton method named subBFGS as well as a local search algorithm based on label switching in pair are used to solve non-smooth and non-convex problems respectively with respect to fro. Base kernels and manifold kernels are added into the multi-kernel framework to exploit the geometric properties of the data. Experimental results show that the proposed algorithm is effective and has excellent generation performance.

同期刊论文项目
期刊论文 33 会议论文 9
同项目期刊论文
期刊信息
  • 《软件学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学院软件研究所 中国计算机学会
  • 主编:赵琛
  • 地址:北京8718信箱中国科学院软件研究所
  • 邮编:100190
  • 邮箱:jos@iscas.ac.cn
  • 电话:010-62562563
  • 国际标准刊号:ISSN:1000-9825
  • 国内统一刊号:ISSN:11-2560/TP
  • 邮发代号:82-367
  • 获奖情况:
  • 2001年入选中国期刊方阵“双百期刊”,2000年荣获中国科学院优秀科技期刊一等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:54609