在这份报纸,在认知无线电联网的宽带察觉到计划的一个分布式的压缩系列被调查。analog-to-information 变换器(AIC ) RF 前端采样结构被建议它为宽带光谱信号采样使用平行的低率类似物到数字变换(模数转换器) 和更少存储单位。建议计划使用 distritbutedly 通过 AIC 收集压缩样品的多重低率 congitive 收音机(CR ) 并且联合恢复信号光谱。一个一般联合稀少模型在这种情形被定义,与基于同时的直角的匹配追求(S-OMP ) 的一个通用恢复算法一起。数字模拟证明这个算法在另外的存在模型下面胜任地在这个模型和工作下面超过当前的存在算法。
In this paper,a distributed compressive spectrum sensing scheme in wideband cognitive radio networks is investigated.An analog-to-information converters(AIC) RF front-end sampling structure is proposed which use parallel low rate analog to digital conversions(ADCs) and fewer storage units for wideband spectrum signal sampling.The proposed scheme uses multiple low rate congitive radios(CRs) collecting compressed samples through AICs distritbutedly and recover the signal spectrum jointly.A general joint sparsity model is defined in this scenario,along with a universal recovery algorithm based on simultaneous orthogonal matching pursuit(S-OMP).Numerical simulations show this algorithm outperforms current existing algorithms under this model and works competently under other existing models.