近年来,本课题组利用简单的一步水热法,将石墨烯和铁酸锰、铁酸镍进行掺杂,先后制备出石墨烯铁酸锰和活性炭铁酸镍纳米光催化材料,并发现在可见光辐射作用下,这两种光催化剂均能利用可见光能量催化分解过氧化氢产生活性因子,从而有效地降解氨.基于此,本文采用简单的水热法成功制备出新型的高效多相石墨烯铁酸铋(rG-BiFeO3)催化剂,并尝试在不添加H2O2的条件下进行光降解氨氮实验.结果表明,该复合光催化剂仍可接受可见光辐射,在rG和BiFeO3的协同作用下高效地光分解氨氮.由X射线衍射结果计算出rG-BiFeO3的平均粒径约为18.5nm.通过清晰的rG-BiFeO3的透射电镜图可以观察到,BiFeO3纳米颗粒物较均匀地分散在rG的二维表面上.对比BiFeO3和rG-BiFeO3的傅里叶变换红外光谱可以发现,rG和BiFeO3之间可能形成了化学键.拉曼光谱结果表明,相对于纯的GO,rG-BiFeO3拉曼谱线的D带和G带发生了蓝移,表明石墨烯铁酸铋复合材料中的GO被充分还原成石墨烯.对比BiFeO3和rG-BiFeO3的紫外-可见漫反射光谱发现,rG-BiFeO3的漫反射光谱发生了红移,表明rG-BiFeO3光催化材料对可见光的响应程度进一步提高.比表面积测定表明,BiFeO3的比表面积为21.0m2/g,而rG-BiFeO3催化剂的比表面积则增加到48.6m2/g,说明rG-BiFeO3的吸附性能将得到很大提高.可见光催化反应结果表明,在不添加H2O2,pH=11的条件下,0.2grG-BiFeO3对50mg/LNH3-N的降解率达到91.2%.动力学研究表明,BiFeO3光催化剂氧化氨氮反应遵循一级反应动力学规律.另外,由于BiFeO3纳米材料本身具有一定的弱磁性,所以BiFeO3和rG的复合材料也具有一定的磁性,较易回收.催化剂经过7次循环使用后,仍然具有很高的光催化活性.根据已有文献报道,吸附在催化剂表面的氨氮被氧化的路径有两条:(1)氨在被氧化为NH2,NH和N2Hx+y(x+y=0,1,2)等一系列中间产物后,最终被分解为氮气;(2)氨?
Graphene‐supported BiFeO3 (rG‐BiFeO3) was synthesized by the hydrothermal method and used for the efficient removal of ammonia under visible light. X‐ray diffraction, transmission electron microscopy,Fourier transform infrared spectroscopy, Raman spectroscopy, and ultraviolet‐visiblediffuse reflectance spectroscopy were conducted to characterize the rG‐BiFeO3. The specific surfacearea of the rG‐BiFeO3 catalyst was 48.6 m2/g, larger than that of BiFeO3 (21.0 m2/g). When used as aheterogeneous photocatalyst, rG‐BiFeO3 achieved 91.20% degradation of a NH3‐N solution (50mg/L) at pH = 11 under visible‐light irradiation in the absence of hydrogen peroxide. The degradationof ammonia followed pseudo‐first‐order kinetics, and the catalyst retained high photocatalyticactivity after seven reaction cycles. Study of the mechanism showed that the holes, superoxide anion radicals, and hydroxyl radicals, arising from the synergy between graphene and BiFeO3, oxidized NH3 directly to N2.