位置:成果数据库 > 期刊 > 期刊详情页
基于混沌优化和网格筛选策略的多目标分布估计算法
  • ISSN号:0254-0037
  • 期刊名称:《北京工业大学学报》
  • 时间:0
  • 分类:TP301[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术] TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]北京工业大学计算机学院多媒体与智能软件技术北京市重点实验室,北京100124
  • 相关基金:国家自然科学基金资助项目(60496322);北京市自然科学基金资助项目(4102010)
中文摘要:

为了解决多目标分布估计算法中进化速度慢、解精度和分布不佳等问题,提出一种基于混沌优化和网格筛选策略的多目标分布估计算法.该算法首先利用混沌模型进行种群的初始化,以获得较理想的初始化结果;然后运用混沌的局部优化策略对每代产生的非支配个体进行寻优,加速种群向Pareto最优前沿的逼近;最后利用简单的网格筛选策略保持个体的均匀分布,从而增强精英种群的多样性.3种评价标准在8个测试问题上的实验表明:与目前最具代表性的RM—MEDA算法相比,该算法不仅在接近真实的最优前沿和保持种群的多样性方面具有一定优势,而且在进化速度上也有较大提高.

英文摘要:

To solve the poor performances of evolution speed, solution precision and distribution in the multi-objective estimation of distribution algorithm, this paper proposes a new algorithm that based on chaos optimization and grid selection strategies. The algorithm first performs initialization using chaos models to obtain better initial results. Then, a chaotic local optimization strategy is applied to get non- dominating individuals in iterations, which makes the population effectively approximate the Pareto optimal front. Finally, a simple grid selection strategy is employed to keep a uniform distribution and enhance the diversity of the elite population. Experimental results on eight test problems using three performance metrics show that the new algorithm has a certain advantage compared to the most representative RM-MEDA algorithm in terms of converging to the true Pareto front and maintaining the diversity of the population,moreover,it is also much faster than RM-MEDA.

同期刊论文项目
期刊论文 49 会议论文 47
同项目期刊论文
期刊信息
  • 《北京工业大学学报》
  • 中国科技核心期刊
  • 主管单位:北京市教委
  • 主办单位:北京工业大学
  • 主编:卢振洋
  • 地址:北京市朝阳区平乐园100号
  • 邮编:100124
  • 邮箱:xuebao@bjut.edu.cn
  • 电话:010-67392535
  • 国际标准刊号:ISSN:0254-0037
  • 国内统一刊号:ISSN:11-2286/T
  • 邮发代号:2-86
  • 获奖情况:
  • 中国高等学校自然科学学报优秀学报二等奖,北京市优秀期刊,华北5省市优秀期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:11924