利用等离子体驱动微小碎片加速器和潘宁源的原子氧模拟装置在中国首次开展了微小碎片撞击与原子氧协同作用对Kapton膜和镀铝Kapton膜的侵蚀效应研究.实验结果表明,碎片撞击能明显加剧原子氧对Kapton和镀铝Kapton膜的侵蚀效应,对航天器的寿命及可靠性构成威胁,制约中国长寿命高可靠性航天器的发展.
Using plasma drag particulate accelerator and atomic oxygen device based on PIG ion source, the first experiment was carried out about the combined effect of small debris and atomic oxygen on both the standard Kapton and Kapton with aluminum film. The result indicates that hypervelocity impact by particulate can accelerate the erosion effect of atomic oxygen on both Kapton and Kapton with aluminum film. The combined effect of hypervelocity impact and atomic oxygen is more important on Kapton with aluminum film than Kapton without film. This is because the impact by hypervelocity particles can destroy the aluminum film which prevents the atomic oxygen from eroding Kapton. So when consider the atomic oxygen effect on Kapton with aluminum film, the combined effect of hypervelocity impact by space debris and atomic oxygen should not be neglected. As a result, this effect is a threat to the life-span and credibility of spacecraft, which will restrict the development of high credibility and long life spacecraft.