In this paper, the bipolar resistive switching characteristic is reported in Ti/ZrO2/Pt resistive switching memory devices. The dominant mechanism of resistive switching is the formation and rupture of the conductive filament composed of oxygen vacancies. The conduction mechanisms for low and high resistance states are dominated by the ohmic conduction and the trap-controlled space charge limited current(SCLC) mechanism, respectively. The effect of a set compliance current on the switching parameters is also studied: the low resistance and reset current are linearly dependent on the set compliance current in the log–log scale coordinate; and the set and reset voltage increase slightly with the increase of the set compliance current. A series circuit model is proposed to explain the effect of the set compliance current on the resistive switching behaviors.
In this paper, the bipolar resistive switching characteristic is reported in Ti/ZrO2/Pt resistive switching memory de- vices. The dominant mechanism of resistive switching is the formation and rupture of the conductive filament composed of oxygen vacancies. The conduction mechanisms for low and high resistance states are dominated by the ohmic conduc- tion and the trap-controlled space charge limited current (SCLC) mechanism, respectively. The effect of a set compliance current on the switching parameters is also studied: the low resistance and reset current are linearly dependent on the set compliance current in the log-log scale coordinate; and the set and reset voltage increase slightly with the increase of the set compliance current. A series circuit model is proposed to explain the effect of the set compliance current on the resistive switching behaviors.