在机器学习理论中,为消除随机影响,对样本进行平均是一种广为使用的处理手段.为此,在具有相同物理激发过程的系统中,利用黎曼梯度的概念,构造了单位超球面上的平均算子.以地震数据盲反卷积为例,结合改进型的带状独立分量分析,提出了基于单位超球面平均的盲反卷积方法.仿真实验表明了所提出方法的有效性和优越性.
Sample averaging is a widely used method in machine learning to rid the random influence.Therefore,in the system with the same physical process,an averaging operator on the unit hypersphere is constructed with the idea of Riemannian gradient.Combined with the improved banded independent component analysis in the problem of blind deconvolution for seismic data,a blind deconvolution method based on averaging over unit hypersphere is proposed. Simulation result shows the effectiveness and superiority of the method.