位置:成果数据库 > 期刊 > 期刊详情页
非线性多变量零阶接近有界系统的多模型自适应控制
  • ISSN号:0254-4156
  • 期刊名称:《自动化学报》
  • 时间:0
  • 分类:TP[自动化与计算机技术]
  • 作者机构:[1]华东理工大学化工过程先进控制和优化技术教育部重点实验室,上海200237, [2]上海交通大学电工与电子技术中心,上海200240
  • 相关基金:国家重点基础研究发展计划(973计划)(2012CB720500); 国家自然科学基金(61333010,61203157); 中央高校基本科研业务费专项资金(上海市科技攻关项目)(12dz1125100); 十二五国家科技支撑计划(2012BAF05B00); 上海市重点学科建设项目(B504); 流程工业综合自动化国家重点实验室开发课题资金资助
中文摘要:

针对一类多变量非线性离散时间系统,提出一种新的基于神经网络的多模型自适应控制方法.为了将非线性系统的高阶非线性项的限制条件放宽到零阶接近有界,该方法引入了一种新的非线性模型.该模型在传统线性回归模型基础上增加了非线性补偿项,使模型的估计误差有界.一个神经网络模型与非线性模型同时被用来对系统进行辨识.基于性能指标的切换机构选择性能较好的模型对应的控制器对系统进行控制.理论分析证明了零阶接近有界多模型自适应控制系统的有界输入和有界输出稳定性.仿真实验说明了提出的多模型自适应控制方法的有效性.

英文摘要:

A novel multiple model adaptive control method using neural networks is proposed for a class of MIMO nonlinear discrete-time systems. In order to relax the restriction of the higher order nonlinear term of the nonlinear system to zeroorder proximity boundedness, this method introduces a new nonlinear model. The model adds a nonlinear compensation term to the conventional linear autoregressive model such that the estimation error is bounded. A neural network model is used to identify the system with nonlinear model simultaneously. A performance-based switching mechanism determines the controller which has the better performance to control the system. Theoretic analysis proves the bounded-input-boundedoutput stability of the zero-order proximity boundedness multiple model adaptive control system. Simulation results are presented to show the effectiveness of the proposed method.

同期刊论文项目
期刊论文 15 会议论文 4
同项目期刊论文
期刊信息
  • 《自动化学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国自动化学会 中国科学院自动化研究所
  • 主编:王飞跃
  • 地址:北京东黄城根北街16号
  • 邮编:100717
  • 邮箱:aas@ia.ac.cn
  • 电话:010-64019820
  • 国际标准刊号:ISSN:0254-4156
  • 国内统一刊号:ISSN:11-2109/TP
  • 邮发代号:2-180
  • 获奖情况:
  • 1997年获全国优秀期刊奖,1985、1990、1996、2000年获中国科学院优秀期刊二等奖,2002年获国家期刊奖
  • 国内外数据库收录:
  • 美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:27550