通过将粒子群优化(Particle Swarm Optimization,PSO)算法与人工蜂群(Artificial BeeColony,ABC)算法相结合,提出一种ABC-PSO并行混合优化算法。在每次迭代中,将种群分为两个子种群,一个子种群使用PSO算法,另一个子种群使用ABC算法,两个算法寻优后进行比较,选出最优适应值。通过混合算法对4个标准函数进行测试,并与标准PSO算法进行比较,结果表明混合算法具有更好的优化性能。
This paper proposes a parallel hybrid optimization algorithm of ABC-PSO by combining Particle Swarm Optimization(PSO) algorithm and Artificial Bee Colony(ABC) algorithm.In each iteration,the swarm is divided into two sub-groups, one sub-group evolves using PSO algorithm, the other sub-group evolves using ABC algorithm and then the two algorithms are compared after selecting the best fitness value.Through comparing the hybrid algorithm with the standard PSO algorithm in evolving solution to four standard functions, the results show that the ABC-PSO hybrid algorithm has a better optimization performance.