位置:成果数据库 > 期刊 > 期刊详情页
应用LS-SVM的飞机重着陆诊断
  • ISSN号:1000-6788
  • 期刊名称:《系统工程理论与实践》
  • 时间:0
  • 分类:TP277[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]南京航空航天大学民航学院,南京210016
  • 相关基金:国家自然科学基金(60879008)
中文摘要:

为提高飞机重着陆判断的准确性,研究了将最小二乘支持向量机(Least square supportvector machine,LS-SVM)应用于民航飞机重着陆诊断的方法.首先,通过分析飞机着陆阶段的运动方程,确定了造成飞机重着陆的主要影响因素,将传统的单一指标诊断扩展到多指标诊断.然后,利用最小二乘支持向量机建立飞机重着陆诊断模型,采用遗传算法优化模型参数.训练和测试样本取自航空公司飞行品质监控数据库中相关参数值.与两类神经网络模型的比较表明,该方法具有更大的应用价值.

英文摘要:

To improve the accuracy of airplane's hard landing diagnosis,this paper develops a hard landing diagnosis model based on Least square support vector machine(LS-SVM).Firstly,by analyzing airplane's motion equation of landing stage,the paper determines several major factors and expands diagnosis indexes from one index to several.Next,LS-SVM is used to establish the airplane's hard landing model.Then, genetic algorithm is used to optimize the model parameters of LS-SVM.We obtain the training and measuring data set from flight quality monitoring database of airlines.Finally,the paper compares with LS-SVM and two kind of neural network model.The results show that LS-SVM diagnosis model is feasible.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《系统工程理论与实践》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国系统工程学会
  • 主编:汪寿阳
  • 地址:北京市海淀区中关村东路55号
  • 邮编:100190
  • 邮箱:xtll@chinajournal.net.cn
  • 电话:010-82541407
  • 国际标准刊号:ISSN:1000-6788
  • 国内统一刊号:ISSN:11-2267/N
  • 邮发代号:2-305
  • 获奖情况:
  • 第三届中国出版政府奖提名奖
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国国家哲学社会科学学术期刊数据库,中国北大核心期刊(2000版)
  • 被引量:56095