位置:成果数据库 > 期刊 > 期刊详情页
免疫聚类算法在基因表达数据分析中的应用
  • ISSN号:1007-5321
  • 期刊名称:《北京邮电大学学报》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]西安电子科技大学计算机学院,西安710071, [2]周口师范学院数学与信息科学系,河南周口466001
  • 相关基金:国家自然科学基金项目(60703107); 河南省教育厅自然科学研究计划项目(2010A520050)
中文摘要:

提出了基于免疫聚类算法的基因表达数据分析方法.根据基因表达数据矩阵的特点,设计了改进的Consine系数来度量基因相似度;借鉴生物免疫学的有关免疫理论,利用基因表达数据分析的先验知识自适应地改变抗体本身及其与抗原亲合度的关系,构造了基于免疫优势克隆的聚类算法.与K-均值算法和遗传算法的对比实验表明,该算法能够获得较大的类内紧制度、较小的类间分离度,具有较好的工程应用价值.

英文摘要:

An analysis method of gene expression data based on immnue clustering algorithm is presented.A modified consine coefficient is put forward to measure comparability of genes in accordance with the characteristic of gene expression data matrix.Inspired by the biology immune system,a new clustering algorithm based on immunodominance cloning(ICCA)is designed.In comparison with K-means algorithm and genetic K-means algorithm,the proposed ICCA given can achieve good class compactness and separability.

同期刊论文项目
期刊论文 48 会议论文 11 专利 5 著作 2
同项目期刊论文
期刊信息
  • 《北京邮电大学学报》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:北京邮电大学
  • 主编:刘杰
  • 地址:北京海淀区西土城路10号195信箱
  • 邮编:100876
  • 邮箱:byxb@bupt.edu.cn
  • 电话:010-62281995 62282742
  • 国际标准刊号:ISSN:1007-5321
  • 国内统一刊号:ISSN:11-3570/TN
  • 邮发代号:2-648
  • 获奖情况:
  • 美国工程信息公司(Ei)数据库收录期刊,1999年全国优秀高等学校自然科学学报及教育部优秀...,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:7684