利用Riemann解的通量差分分裂法——Godunov方法对Oseen流控制方程进行离散,得到了基于一阶上迎风格式的离散方程,并给出了使用多重网格方法求解该离散方程的V-循环算法和W-循环算法的收敛性分析.通过局部Fourier分析方法,对获得的离散方程的聚对称交替线GaussSeidel松弛的光滑性质进行了研究.结果表明:使用多重网格的两层网格及三层网格算法求解具有不同Reynolds数的Oseen流,即便是在高Reynolds数情况下,聚对称交替线Gauss-Seidel松弛具有很好的光滑性质,多重网格W-循环算法收敛性比V-循环算法好.
The 1st-order upwind discretization form of the Oseen flow was obtained through the Godunovtype flux-difference splitting approach based on the Riemann solver. The convergence analysis of 2 kinds of cycling algorithms,i. e.,the V-cycle and the W-cycle in the multigrid method for the solution of the discretized equations,was performed. Furthermore,the smooth properties of the collective symmetrical alternating-line Gauss-Seidel relaxation was investigated by means of the local Fourier analysis. The numerical results show that the collective symmetrical alternating-line Gauss-Seidel relaxation has sound smooth properties,and the convergence of the W-cycle algorithm is better than that of the V-cycle one in the multigrid method for the solution of the Oseen flow with different Reynolds numbers.