We use the class of L-injective modules to define L-injective covers, and provide the characterizations of L-injective covers by the properties of kernels of homomorphisms. We prove that the right L-noetherian right L-hereditary ring is just such that every right R-module has an L-injective cover which is monic. We also use kernels of homomorphisms to investigate L-simple L-injective covers and give some constructions ofL-simple L-iniective covers.