位置:成果数据库 > 期刊 > 期刊详情页
基于多层次语言特征的弱监督评论倾向性分析
  • ISSN号:1003-0077
  • 期刊名称:中文信息学报
  • 时间:2015.7.15
  • 页码:80-88
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南京航空航天大学计算机科学与技术学院,江苏南京210016
  • 相关基金:国家自然科学基金(61202132); 教育部高等学校博士学科点专项基金(20103218120024); 中央高校基本科研业务费专项资金(NS2012073)
  • 相关项目:基于文本中关系相似性的蛋白质交互作用自动识别研究
中文摘要:

该文提出一种基于多层次语言特征的弱监督的情感分析方法,先以少量情感词构成初始情感词典,用这些种子词汇作引导,根据评论文本在单词、短语及句子级别的语言特征结合上下文挖掘目标文本中潜在的具有情感倾向的词汇/短语。通过自训练不断扩充情感词典,最终得到一个具有领域特征的情感词典,并用所得到的情感词典对目标文本的情感倾向进行判断。与其他方法在同一数据上的结果相比,该方法以很小的词典规模取得了最高的F-score,并且得到的情感词含义明确。方法用于不同领域也取得了较高的精度,表明方法具有较好的领域适应性。

英文摘要:

In this paper, a weakly supervised sentiment analysis approach is proposed. A few words are collected to construct an initial sentiment lexicon. These seed words are used to mine potential sentimental words in the target text. In this process, linguistic features at multi-levels are explored and the role of the context is examined. The lex- icon is expanded iteratively, and the final version is applied to classify the sentiment of a target document. Compared to results of previous studies on the same data, this approach achieves the best F-score while the constructed senti- ment lexicon is rather small. The experimental results also show that this approach is robust when applied to a texts of different domains.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中文信息学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国中文信息学会 中国科学院软件研究所
  • 主编:孙茂松
  • 地址:北京海淀中关村南四街4号中科院软件所
  • 邮编:100190
  • 邮箱:jcip@iscas.ac.cn
  • 电话:010-62562916
  • 国际标准刊号:ISSN:1003-0077
  • 国内统一刊号:ISSN:11-2325/N
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:9136