位置:成果数据库 > 期刊 > 期刊详情页
Gap induced mode evolution under the asymmetric structure in a plasmonic resonator system
  • ISSN号:2327-9125
  • 期刊名称:《光子学研究:英文版》
  • 时间:0
  • 分类:TN629.1[电子电信—电路与系统]
  • 作者机构:State Key Laboratory of Information Photonics and Optical Communications and School of Science, Beijing University of Posts and Telecommunications, School of Ethnic Minority Education, Beijing University of Posts and Telecommunications
  • 相关基金:National Natural Science Foundation of China(NSFC)(61622103,61471050,61671083,11404031);Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China(151063);Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics,Tsinghua University(KF201610)
中文摘要:

The modulation of resonance features in microcavities is important to applications in nanophotonics.Based on the asymmetric whispering-gallery modes(WGMs)in a plasmonic resonator,we theoretically studied the mode evolution in an asymmetric WGM plasmonic system.Exploiting the gap or nano-scatter in the plasmonic ring cavity,the symmetry of the system will be broken and the standing wave in the cavity will be tunable.Based on this asymmetric structure,the output coupling rate between the two cavity modes can also be tuned.Moreover,the proposed method could further be applied for sensing and detecting the position of defects in a WGM system.

英文摘要:

The modulation of resonance features in microcavities is important to applications in nanophotonics. Based on the asymmetric whispering-gallery modes (WGMs) in a plasmonic resonator, we theoretically studied the mode evolution in an asymmetric WGM plasmonic system. Exploiting the gap or nano-scatter in the plasmonic ring cavity, the symmetry of the system will be broken and the standing wave in the cavity will be tunable. Based on this asymmetric structure, the output coupling rate between the two cavity modes can also be tuned. Moreover, the proposed method could further be applied for sensing and detecting the position of defects in a WGM system. (C) 2017 Chinese Laser Press

同期刊论文项目
同项目期刊论文
期刊信息
  • 《光子学研究:英文版》
  • 主管单位:
  • 主办单位:中国科学院上海光学精密机械研究所
  • 主编:
  • 地址:上海市
  • 邮编:
  • 邮箱:
  • 电话:021-
  • 国际标准刊号:ISSN:2327-9125
  • 国内统一刊号:ISSN:31-2126/O4
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:1