位置:成果数据库 > 期刊 > 期刊详情页
Maximum packing densities of basic 3D objects
  • ISSN号:1001-6538
  • 期刊名称:科学通报(英文版)
  • 时间:0
  • 页码:114-119
  • 语言:中文
  • 分类:O123.2[理学—数学;理学—基础数学] TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, China
  • 相关基金:We acknowledge Professor Pu Chen (Peking University)for his earnest help and support to this work. We thank Professor S. Torquato (Princeton University, U.S.), Dr. A. Kyrylyuk (Utrecht University, Holland), Dr. Xiaodong Jia (University of Leeds, U.K.) and Dr. Haiping Zhu (University of New South Wales, Australia)for their valuable discussion and help. This work was supported by the National Natural Science Foundation of China (Grant No. 10772005) and National Basic Research Program of China (Grant No. 2007CB714603).
  • 相关项目:非球体填充的数值模拟和实验研究
中文摘要:

基本 3D 的随机的收拾行李的密度的上面的界限顺序反对的数字模拟结果表演是立方体( 0.78 )>椭圆体( 0.74 )>柱体( 0.72 )> spherocylinder ( 0.69 )>四面体( 0.68 )>锥( 0.67 )>范围( 0.64 ),当包装基本 3D 目标的密度订的上面的界限顺序是立方体( 1.0 )时>柱体和 spherocylinder ( 0.9069 )>锥( 0.7854 )>四面体( 0.7820 )>椭圆体( 0.7707 )>范围( 0.7405 );这二份订单是显著地不同的。椭圆体,柱体, spherocylinder,四面体和锥的随机的收拾行李密度是仔细与他们的形状有关。给最高的收拾行李密度的这些目标的最佳的方面比率是椭圆体(轴比率 = 0.8:1:1.25 ) ,柱体(高度 / 直径 = 0.9 ) , spherocylinder (柱体部分 / 直径 = 的高度 0.35 ) ,四面体(常规四面体) 和锥(高度 / 底部直径 = 0.8 ) 。

英文摘要:

Numerical simulation results show that the upper bound order of random packing densities of basic 3D objects is cube (0.78) 〉 ellipsoid (0.74) 〉 cylinder (0.72) 〉 spherocylinder (0.69) 〉 tetrahedron (0.68) 〉 cone (0.67) 〉 sphere (0.64), while the upper bound order of ordered packing densities of basic 3D objects is cube (1.0) 〉 cylinder and spherocylinder (0.9069) 〉 cone (0.7854) 〉 tetrahedron (0.7820) 〉 ellipsoid (0.7707) 〉 sphere (0.7405); these two orders are significantly different. The random packing densities of ellipsoid, cylinder, spherocylinder, tetrahedron and cone are closely related to their shapes. The optimal aspect ratios of these objects which give the highest packing densities are ellipsoid (axes ratio = 0.8 : 1 : 1.25), cylinder (height/diameter = 0.9), spherocylinder (height of cylinder part/diameter = 0.35), tetrahedron (regular tetrahedron) and cone (height/bottom diameter = 0.8).

同期刊论文项目
同项目期刊论文