基本 3D 的随机的收拾行李的密度的上面的界限顺序反对的数字模拟结果表演是立方体( 0.78 )>椭圆体( 0.74 )>柱体( 0.72 )> spherocylinder ( 0.69 )>四面体( 0.68 )>锥( 0.67 )>范围( 0.64 ),当包装基本 3D 目标的密度订的上面的界限顺序是立方体( 1.0 )时>柱体和 spherocylinder ( 0.9069 )>锥( 0.7854 )>四面体( 0.7820 )>椭圆体( 0.7707 )>范围( 0.7405 );这二份订单是显著地不同的。椭圆体,柱体, spherocylinder,四面体和锥的随机的收拾行李密度是仔细与他们的形状有关。给最高的收拾行李密度的这些目标的最佳的方面比率是椭圆体(轴比率 = 0.8:1:1.25 ) ,柱体(高度 / 直径 = 0.9 ) , spherocylinder (柱体部分 / 直径 = 的高度 0.35 ) ,四面体(常规四面体) 和锥(高度 / 底部直径 = 0.8 ) 。
Numerical simulation results show that the upper bound order of random packing densities of basic 3D objects is cube (0.78) 〉 ellipsoid (0.74) 〉 cylinder (0.72) 〉 spherocylinder (0.69) 〉 tetrahedron (0.68) 〉 cone (0.67) 〉 sphere (0.64), while the upper bound order of ordered packing densities of basic 3D objects is cube (1.0) 〉 cylinder and spherocylinder (0.9069) 〉 cone (0.7854) 〉 tetrahedron (0.7820) 〉 ellipsoid (0.7707) 〉 sphere (0.7405); these two orders are significantly different. The random packing densities of ellipsoid, cylinder, spherocylinder, tetrahedron and cone are closely related to their shapes. The optimal aspect ratios of these objects which give the highest packing densities are ellipsoid (axes ratio = 0.8 : 1 : 1.25), cylinder (height/diameter = 0.9), spherocylinder (height of cylinder part/diameter = 0.35), tetrahedron (regular tetrahedron) and cone (height/bottom diameter = 0.8).