对有向图D=(V(D),E(D)),顶点u和v的局部边连通度λ(u,v)=min{|X|:X真包含E(D),D—X中不存在从u到v的路}.若对D中任意两个顶点u和v,λ(u,v)=min{d^+(u),d^-(v)},称D为极大局部边连通的.笔者得到了有向图是极大局部边连通的两个度条件,推广了别人的三个结果.
For a digraph D = (V(D),E(D)),the local- edge -connectivity of vertices u and λ(u,v) = min {|X|:X lohtain in E(D), there exists no u -v path in D -X}. D is called local -edge - connected if for any pair of vertices u and v in D we have A ( u, v) = min] d ^+ (u.), d^- (v) t. This paper presents two degree conditions for digraphs to be local -edge -connected, which generalizes three existing results.