位置:成果数据库 > 期刊 > 期刊详情页
基于动作单元分析的人体动画合成方法研究
  • ISSN号:1000-1239
  • 期刊名称:《计算机研究与发展》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中国科学院计算技术研究所虚拟现实技术实验室,北京100190, [2]中国科学院研究生院,北京100049
  • 相关基金:国家自然科学基金项目(60573162,60533070,60603082,60703019);中同科学院“科技助残行动汁划”摹金项目(KGCX2-YW-610);同家科技支撑计划基金项目(2008BA150807);国家“八六三”高技术研究发展计划基金项目(2006AA012336,2007AA012320)
中文摘要:

从运动捕获数据中提取出反映人体运动规律的基本动作单元,合成新的人体动画已成为研究热点.但已有动作单元提取方法忽略了运动序列的时序性和不同关节之间的运动相关性.针对该问题,提出了一种新的基本动作单元提取方法,首先,采用PCA方法对高维人体运动数据进行降维分析,并采用马氏距离平方度量姿态间的相似性;其次,结合动态时间归整方法和误差平方和准则对时序运动序列进行自动切分和标注;最后,建立不同动作单元之间的概率转移模型构建运动图,并根据约束条件合成新的逼真人体动画.

英文摘要:

Synthesizing high-quality human animations from the motion capture data is an important technology. The cost for the motion capture system is quite high, and the motion data cleaning is also an exhausting work. Usually, the existing motion capture data is a long motion sequence. Therefore, in many practical applications, it is difficult to create new animations from the long motion sequence directly. So it is a hot topic to extract the primitive movement from the existing motion capture data for synthesizing new animations. Many existing methods seldom consider the time sequence of motion data and the correlation among the joints. In this paper, a new technology is proposed to extract the primitive movement for synthesizing new animations. Firstly, PCA is adopted to map the high- dimensional motion data into a low-dimensional space, and the squared Mahalanohis distance is used to measure the similarity between different poses. Secondly, dynamic time warping and the sum of mean squared error are combined to segment and label the motion capture data automatically. Finally, a probability transfer model is proposed to construct the motion graph, which can be easily used for synthesizing new animations based on constraints.

同期刊论文项目
期刊论文 100 会议论文 54 获奖 5 专利 41
期刊论文 26 会议论文 14 专利 5
期刊论文 30 会议论文 12 获奖 4 专利 2
同项目期刊论文
期刊信息
  • 《计算机研究与发展》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院计算技术研究所
  • 主编:徐志伟
  • 地址:北京市科学院南路6号中科院计算所
  • 邮编:100190
  • 邮箱:crad@ict.ac.cn
  • 电话:010-62620696 62600350
  • 国际标准刊号:ISSN:1000-1239
  • 国内统一刊号:ISSN:11-1777/TP
  • 邮发代号:2-654
  • 获奖情况:
  • 2001-2007百种中国杰出学术期刊,2008中国精品科...,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:40349