位置:成果数据库 > 期刊 > 期刊详情页
融合迁移学习的TranCo—Training分类模型
  • ISSN号:1003-6059
  • 期刊名称:《模式识别与人工智能》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]山东省高校智能信息处理重点实验室(山东工商学院),烟台264005, [2]大连海事大学信息科学技术学院,大连116026
  • 相关基金:国家自然科学基金资助项目(No.61073133,61175053,61272369,61272244)
中文摘要:

半监督学习中当未标注样本与标注样本分布不同时,将导致分类器偏离目标数据的主题,降低分类器的正确性.文中采用迁移学习技术,提出一种TranCo—Training分类模型.每次迭代,根据每个未标注样本与其近邻标注样本的分类一致性计算其迁移能力,并根据迁移能力从辅助数据集向目标数据集迁移实例.理论分析表明,辅助样本的迁移能力与其训练错误损失成反比,该方法能将训练错误损失最小化,避免负迁移,从而解决半监督学习中的主题偏离问题.实验表明,TranCo-Training优于随机选择未标注样本的RdCo-Training算法,尤其是给定少量的标注目标样本和大量的辅助未标注样本时.

英文摘要:

When unlabeled data draw from different distributions compared with labeled data in semi-supervise learning, the topic biases the target domain and the performance of semi-supervised classifier decreases. The transfer technique is applied to improve the performance of semi-supervised learning in this paper. An enhanced categorization model called TranCo-training is studied which combines transfer learning techniques with co-training methods. The transferability of each unlabeled instance is computed by an important component of TranCo-training according to the consistency with its labeled neighbors. At each iteration, unlabeled instances are transferred from auxiliary dataset according to their transfer ability. Theoretical analysis indicates that transfer ability of an unlabeled instance is inversely proportional to its training error, which minimizes the training error and avoids negative transfer. Thereby, the problem of topic bias in semi-supervised learnin~ is solved. The experimental results show that TranCo-training algorithm achieves better performance than the RdCo-training algorithm when a few labeled data on target domain and abundant unlabeled data on auxiliary domain are provided.

同期刊论文项目
期刊论文 34 会议论文 4 获奖 2 著作 2
同项目期刊论文
期刊信息
  • 《模式识别与人工智能》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会 中国自动化学会
  • 主办单位:国家智能计算机研究开发中心 中国科学院合肥智能机械研究所
  • 主编:郑南宁
  • 地址:安徽省合肥市蜀山湖路350号中国科学院合肥智能机械研究所
  • 邮编:230031
  • 邮箱:bjb@iim.cas.cn
  • 电话:0551-5591176
  • 国际标准刊号:ISSN:1003-6059
  • 国内统一刊号:ISSN:34-1089/TP
  • 邮发代号:26-69
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:10169