基于C00受体和有机分子给体的太阳能电池是目前非常重要的一个研究热点,利用同步辐射真空紫外光电子能谱(SRUPS)技术研究了酞菁铁(FePc)与Ti02(110)及c60的界面电子结构,以及FePc与c60分子混合薄膜的电子结构.SRUPS价带谱显示,FePc沉积在化学计量比与还原态两种不同的Ti02(110)表面时,FePc分子的HOMO能级均随FePc厚度的变化发生了移动,而在化学计量比的tTi02(110)表面位移较大,同时发生界面能带弯曲,说明存在从有机层向衬底的电子转移.在FePc/C60和C60/FePc界面形成过程中,FePc与C60分子的最高占据分子轨道(HOMO)位移大小基本相同.由界面能级排列发现,在FePc与C60的混合薄膜中,FePc分子的HOMO与C60分子的最高占据分子轨道能级差较大,这有利于提高器件开路电压,改善器件性能.
The electronic structures at the interfaces of iron phthalocyanine (FePc)/TiO2(110), FePc/C60 and FePc:C6o blends are studied in sitz~ by synchrotron radiation-based ultraviolet photoelectron spectroscopy (SRUPS). It is found that the interaction between organic molecules and the surface of reduced ruffle TiO2 (110) is stronger than that of the stoichiometric TiO2 (110) interface. The energy level alignments at the FePc/C6o interface and FePc:C6o blends are drawn based on the evolutions of the interfacial electronic structures. From the SRUPS spectra, the band bending energies are found to be 0.45 eV in the C6o layer and 0.1 eV in the FePc layer at the FePc/C6o interface. The interface dipole energy is 0.2 eV at the FePc/C6o interface. The offsets between the HOMO of FePc and LUMO of C6o are 0.85 eV at FePc/C6o and 1.04 eV at FePc:C6o blends, which indicates that the blend films can improve the efficiency of the relevant optical-electric devices.