位置:成果数据库 > 期刊 > 期刊详情页
一种基于隐马尔可夫模型的虚拟机失效恢复方法
  • ISSN号:1000-9825
  • 期刊名称:《软件学报》
  • 时间:0
  • 分类:TP316[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中国科学院软件研究所软件工程技术中心,北京100190, [2]计算机科学国家重点实验室(中国科学院软件研究所),北京100190, [3]中国科学院大学,北京100049
  • 相关基金:基金项目:国家自然科学基金(61173003);国家高技术研究发展计划(863)(2012AA011204);国家科技支撑计划(2012BAH14B02)
中文摘要:

随着虚拟化技术的发展与普及,越来越多的企业将关键业务系统部署到了虚拟化平台上虚拟化技术降低了企业的硬件和管理成本,但同时也给系统的可靠性带来了严峻挑战.传统的方法通过运行时系统状态备份的方法来提高系统的失效恢复能力,但该方法会引入了巨大的系统开销.提出了一种基于隐马尔可夫模型的系统失效恢复性能优化方法.通过对系统运行时状态的预测分析计算系统未来运行状态的概率趋势,并在运行过程中动态调整系统失效恢复功能与正常业务功能之间的资源分配,从而降低了系统的运行时性能开销,提高了业务系统服务能力.实验分析显示,该方法可以在保障系统可靠性的同时有效地降低系统的性能开销,在系统运行状态稳定的情况下,最高可以降低2/3的系统响应时间.

英文摘要:

With the development and popularization of virtualization technology, more and more enterprises will deploy their business-critical systems on virtualization platform. While reducing the company's hardware and management costs, virtualization also brings severe challenges for system reliability. While the runtime system state replication backup method can improve the failure recovery capabilities of system, it also introduces huge overhead. This paper presents a performance optimization method based on hidden Markov model for system failure recovery. It analyzes runtime states of the system, and calculates the probability of system running tendency. Business system optimization is achieved by dynamically adjusting resources allocation between the failure recovery function and normal business function to reduce the runtime overhead. Experimental results show that the presented approach can guarantee reliability of the system while effectively reducing performance overhead by up to 2/3.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《软件学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学院软件研究所 中国计算机学会
  • 主编:赵琛
  • 地址:北京8718信箱中国科学院软件研究所
  • 邮编:100190
  • 邮箱:jos@iscas.ac.cn
  • 电话:010-62562563
  • 国际标准刊号:ISSN:1000-9825
  • 国内统一刊号:ISSN:11-2560/TP
  • 邮发代号:82-367
  • 获奖情况:
  • 2001年入选中国期刊方阵“双百期刊”,2000年荣获中国科学院优秀科技期刊一等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:54609