位置:成果数据库 > 期刊 > 期刊详情页
一种基于改进ASM的运动目标跟踪方法
  • ISSN号:0253-2778
  • 期刊名称:《中国科学技术大学学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中国科学技术大学自动化系,安徽合肥230027
  • 相关基金:高等学校博士学科点专项科研基金资助课题(20093402110014),中国高技术研究发展(863)计划(2009AA11A113)资助.
中文摘要:

ASM是一种应用于非刚体轮廓匹配的统计模型方法,由于匹配结果的可靠性依赖于先验的灰度模型,导致灰度信息发生动态变化时基于ASM的目标跟踪效果不佳.针对跟踪中轮廓匹配的鲁棒性问题,提出了一种基于改进ASM的目标跟踪方法,该方法采用一种在线提取和更新灰度模型的机制,摆脱对目标先验灰度的依赖;并结合强边缘特征和目标内部灰度信息,改进传统ASM方法的灰度模型和搜索算法,提高了运动过程中目标附近背景信息变化情况下轮廓匹配的鲁棒性和快速性;跟踪过程中利用卡尔曼滤波预测目标位置提高了运行效率.实验验证了方法的有效性和鲁棒性.

英文摘要:

ASM is a model based method which is applied to matching contours of non-rigid objects. Due to their dependence on the prior grey level model, the tracking results may be ineffective when grey level information changes dynamically. To improve the robustness of contour matching when tracking moving objects, a novel method based on ASM was proposed. The method got rid of the dependence on the prior information by learning the grey level model online. Meanwhile, in order to improve the accuracy, target inner grey information was adopted to replace the traditional model and the strong edge feature was used to enhance the performance of the iterative search algorithm. The proposed method also combined Kalman filter to improve the efficiency. Experiments show its validity and robustness.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国科学技术大学学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学技术大学
  • 主编:何多慧
  • 地址:安徽省合肥市金寨路96号
  • 邮编:230026
  • 邮箱:JUST@USTC.EDU.CN
  • 电话:0551-63601961 63607694
  • 国际标准刊号:ISSN:0253-2778
  • 国内统一刊号:ISSN:34-1054/N
  • 邮发代号:26-31
  • 获奖情况:
  • 1999年,全国优秀高等学校自然科学学报及教育部优...,2001年,安徽省1999-2001年度优秀科技期刊一等奖,2002年,第三届华东地区优秀期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:8237