基于稳固的连续统的力学的基本方程,纸在周期性地分布式的球形的粒子在一个无限的矩阵与不同分布代表的各向同性的连续统为有弹性的热压力的决心雇用一个分析模特儿, imaginarily 与等于内部粒子的距离的尺寸划分了成相同房间,在粒子表面上包含一个中央球形的粒子与或没有一个球形的信封。因而,作为关于分析建模的一个模型系统, multi-particle-( 信封) 矩阵系统对多相的材料的四种类型适用。作为粒子体积部分 v ,沿着三互相垂直的轴的内部粒子的距离 d 1, d 2, d 3,和粒子和信封半径的功能, R 1和 R 2,分别地,在房间以内的热压力,在矩阵,信封和粒子代表的阶段的热扩大系数作为差别的后果在一个冷却过程期间被发源。分析 --( 试验性) 为多相的材料的计算一生预言方法被建议,它能与真实多相的材料的参数的适当的值在工程被使用。
Based on the fundamental equations of the mechanics of solid continuum, the paper employs an analytical model for determination of elastic thermal stresses in isotropic continuum represented by periodically distributed spherical particles with different distributions in an infinite matrix, imaginarily divided into identical cells with dimensions equal to inter-particle distances, containing a central spherical particle with or without a spherical envelope on the particle surface. Consequently, the multi-particle-(envelope)- matrix system, as a model system regarding the analytical modelling, is applicable to four types of multi-phase materials. As functions of the particle volume fraction v, the inter-particle distances dl, d2, d3 along three mutually per- pendicular axes, and the particle and envelope radii, R1 and R2, respectively, the thermal stresses within the cell, are originated during a cooling process as a consequence of the difference in thermal expansion coefficients of phases rep- resented by the matrix, envelope and particle. Analytical-(experimental)-computational lifetime prediction methods for multi-phase materials are proposed, which can be used in engineering with appropriate values of parameters of real multi-phase materials.