设(x,d,μ)是一个满足上双倍条件和几何双倍条件的度量测度空间.证明了Marcinkiewicz积分M与Lip_β(μ)函数b生成的交换子M_b的(Lp(μ),Lq(μ))型和(L1(μ),Ln/(n-β)·∞(μ))型不等式.得到交换子M_b是从Hardy空间H1(μ)到Ln/(n-β)(μ)上有界的.
Let(x,d,μ) be a measure space satisfying the upper doubling condition and the geometrically doubling condition,the inequalities of type(Lp(μ),Lq(μ)) and type(L1(μ),Lπ/(n-β)·∞(μ)) are obtained for the Marcinkiewicz commutator M_b generated by the Marcinkiewicz integral operator M and the Lipβ(μ) function b.It was shown that the commutator M_b is bounded from Hardy spaces H1(μ) into the spaces Ln/(n-β)(μ).