位置:成果数据库 > 期刊 > 期刊详情页
燃烧过程空燃比的智能控制方法
  • ISSN号:0254-0037
  • 期刊名称:《北京工业大学学报》
  • 时间:0
  • 分类:TP273[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]北京工业大学电子信息与控制工程学院,北京100022, [2]东北大学自动化研究中心,沈阳110004
  • 相关基金:国家重点基础研究发展规划资助项目(2002CB312201);国家自然科学基金资助项目(60704036);北京工业大学博士科研启动基金资助项目(52002017200701);北京工业大学青年基金资助项目(97002011200701).
中文摘要:

矿石焙烧竖炉燃烧过程空燃比采用定比例控制导致燃烧效率低下并且故障频发,难以适应复杂工况的变化.应用案例推理、神经网络等智能技术,提出了空燃比的智能控制方法.根据当前工况的变化趋势及燃烧过程的故障案例,采用案例推理技术对燃烧过程中的典型故障进行预报,在此基础上,通过神经网络算法实现了空燃比的在线校正.将该方法应用于竖炉焙烧燃烧过程的生产实际中,提高了燃烧温度的控制精度,降低了能耗,且故障发生率明显降低.

英文摘要:

Due to its synthetic and complex characters, the combustion process with fixed air-fuel ratio Of shaft ore-roasting furnace is very difficult to be controlled stably, the fault is appeared frequently and lead to the combustion efficiency laigh. To deal with this problem, an intelligent control approach has been developed for the air-fuel ratio combination of case-based reasoning and neural network. The fault prediction model performs to predict the typical fault with the help of case-based reasoning technology is obtained with the working trend and the fault cases. According to these, the tuning value of air-fuel ratio are given by the algorithm based on neural network. The proposed method has been successfully applied to the combustion process of a shaft furnace, with increase of control accuracy for the combustion temperature, reduction of gas consumption and the fault ratios.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《北京工业大学学报》
  • 中国科技核心期刊
  • 主管单位:北京市教委
  • 主办单位:北京工业大学
  • 主编:卢振洋
  • 地址:北京市朝阳区平乐园100号
  • 邮编:100124
  • 邮箱:xuebao@bjut.edu.cn
  • 电话:010-67392535
  • 国际标准刊号:ISSN:0254-0037
  • 国内统一刊号:ISSN:11-2286/T
  • 邮发代号:2-86
  • 获奖情况:
  • 中国高等学校自然科学学报优秀学报二等奖,北京市优秀期刊,华北5省市优秀期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:11924