针对弹体对混凝土材料侵彻深度问题,通过量纲分析和神经网络理论,建立了弹体侵彻深度h网络输出量与弹体长度lp、弹的长径比lp/d、弹体形状系数砂、弹体与混凝土的比强度σyt/σyp弹体与混凝土的密度比ρp/ρt等13个网络输入量之间的非线性映射关系。并采用RBF网络模型,通过Forrestal等文献的试验样本对网络模型训练,获得了弹体对混凝土材料侵彻深度的网络模型,输出结果满意。
In this article, nonlinear mapping relation between input of 13 variables of lp and σyt/σyp etc. , and output of penetration depth is established by dimensional analysis and theory of artificial neural networks for problem of penetration depth of projectiles into concrete. Moreover, a satisfied output about penetration depth from RBF neural network is gotten by a group of input sets and corresponding output sets, which comes from M. J. Forrestal ' s document.