位置:成果数据库 > 期刊 > 期刊详情页
SOM聚类与Voronoi图在验证码字符分割中的应用
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP319.41[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]上海理工大学光电学院,上海200093, [2]上海市现代光学系统重点实验室,上海200093, [3]国家卫星气象中心,北京100081
  • 相关基金:基金项目:国家自然科学基金资助项目(41075019)
中文摘要:

字符分割是验证码字符识别的关键。为了解决粘连字符构成的验证码分割成功率低的问题,提出了一种基于SOM(self-organizingmaps)神经网络聚类与维诺图(Voronoi)骨架形态分析相结合的粘连字符分割算法。该算法通过连通分量区分粘连字符,然后利用Voronoi图获得粘连字符的骨架形态,提取粘连字符的骨架特征点;根据SOM聚类后的拓扑神经元分布确定分割点,完成粘连字符骨架的分割与复原。用网络验证码图片集进行了测试,实验效果与滴水法和连通分量提取法对比显示了该分割算法的优越性。该算法对各种字符粘连类型及字体倾斜扭曲的验证码均能准确分割,为粘连字符分割提供了一种新的方法。

英文摘要:

Character segmentation is the point in CAPTCHA recognition. As the connected characters in CAPTCHA would be segmented with a low success rate, this paper proposed a character segmentation algorithm based on the clustering of the tou- ching region via self-organizing maps and skeletonization via Voronoi. Firstly, it used connected-component-based method to confirm connected character pairs, and selected feature points through a skeletonization process by Voronoi. Then determined the segmentation points by the neurons of SOM,leading to the final segmentation and character restoration. The results from the tests on the online CAPTCHA collections show that this algorithm achieves a better performance than the drop-fall and the con- nected-component-based algorithms. It can segment varieties of'connected and distorted CAPTCHA, providing a new method for the segmentation of connected characters.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049