学者基于不同地理区域,借助目前已有或者构建新的盐分和植被指数定量评估研究区的土壤盐度状况。但多数指数并未在盐渍化较为严重的中国新疆地区进行系统性对比分析。因此,本文以新疆阜北地区(采样数=37),玛纳斯河绿洲(采样数=68)和渭干河-库车河绿洲(采样数=38)为研究区,以灌区农田和盐渍地采样数据和Landsat TM/ETM+/OLI为数据源,利用线性模型和多个非线性模型(10个)测试上述指数(14个指数)和原始波段对于研究区土壤盐度的敏感性。结果显示,阜北地区基于遥感获取的扩展的增强型植被指数Extented Enhanced Vegetation Index(EEVI)在全样本和部分样本(盐渍化样本,土壤盐度〉0.3%)两种模式下(0—10cm),较其他指数和波段而言较为敏感。在全样本和部分样本(土壤饱和溶液电导率〈2ds/m)两种模式下,与玛纳斯流域各层土壤盐度最为敏感的为band 2,部分样本模式下土壤盐度变异性显著性探测最大下探深度为30cm。渭干河-库车河绿洲全样本模式下,最大土壤盐度变异性显著性探测深度为40cm,0—10cm和10—20cm深度表现最为敏感的是土壤盐分指数SI-T,20—40cm深度则为植被指数TGDVI。部分样本下(土壤饱和溶液电导率〉2ds/m),0—10cm深度最为敏感的为band5,10—20cm深度最为敏感的为TGDVI,20—40cm深度则为EEVI。其他指数因地理环境的差异性(气候,土壤盐分类型,土壤类型,采样时间),与土壤盐度之间并未达到显著性(sig=0.05或者0.01)的水平。以上结果只是初步结论,但也暗示其中的某些指数在本区具有一定土壤盐度的识别潜力。此外,由于土壤本身的复杂性,需要采集更多的样本以深入分析不同盐度等级下上述指数的具体表现。
Several indices of vegetation and soil salinity have been developed to quantitatively evaluate soil salinization. This study was conducted to assess the soil salinity levels in the Fubei region (FG), Manas River Basin (MRB), and Werigan- Kuqa River Delta Oasis (WKRDO) , which are distributed in the northern and southern Tianshan Mountains in Xinjiang, China. Ground measurements and remote sensing data were used to evaluate the sensitivity of vegetation and soil salinity indices to soil salinity variation in farmland and salt-affected land. A random sampling approach was used to collect soil samples from FG (n= 37, only at 0-10-cm depth), MRB (n= 58), and WKRDO (n= 38). A total of 14 broadband indices encompassing vegetation and soil salinity indices were extracted from Landsat images. The correlation coefficient based on linear and non-linear models ( 10 models) between these indices, Landsat bands, and soil salinity was examined. The results showed that the extended enhanced vegetation index (EEVI) was the most effective for explaining the soil salinity variation at depths of 0-10 cm in two modes (all samples and partial samples with soil salinity (soil salt content) 〉0.3%) in FG. With the mode of all samples and partial samples (soil electric conductivity 〈2 dS/m) in MRB, band 2 yielded the best results for assessing the soil salinity of cultivated lands at the early stage of crop growth in April. The maximum depth of the significance test by using indices for detecting variation of soil salinity in this area was 30 cm. For all samples in WKRDO, the salinity index (SI-T) interpreted more variation of soil salinity than that by other indices at depths of 0-10 and 10-20 cm, and the three-band maximal gradient difference index (TGDVI) exhibited the highest significant correlation with salinity at 20-40 cm. In the mode of partial samples ( soil salinity 〉2 dS/m) , the most sensitive index for variation of soil salinity at 0-10, 10-20, and 20-40 cm were b