位置:成果数据库 > 期刊 > 期刊详情页
基于欧氏距离双比特嵌入哈希的图像检索
  • ISSN号:0255-8297
  • 期刊名称:《应用科学学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]北京交通大学信息科学研究所,北京100044, [2]北京交通大学现代信息科学与网络技术重点实验室,北京100044, [3]北京化工大学理学院,北京100029
  • 相关基金:国家“863”高技术研究发展计划基金(No.2014AA015202); 国家自然科学基金(No.61272028,No.61572067); 北京市自然基金(No.4162050); 广东省自然科学基金(No.2016A030313708)资助
中文摘要:

提出一种基于欧氏距离的双比特嵌入哈希算法,以欧氏距离来度量二进制哈希编码之间的相似性.该方法可更好地保持原始特征空间的相似性关系,提高检索精度.另外,为了提高欧氏距离的计算速度,利用位操作实现二进制哈希编码欧氏距离的计算.对于64位的双比特嵌入哈希码,所提算法比传统欧氏距离的计算速度快400倍左右.在3个主流图像库上进行图像检索实验,与当前主流量化算法相比,该算法取得了更好的检索结果.

英文摘要:

We propose a double-bit embedding hashing method based on the Euclidean distance(DBE-E). Euclidean distance is used to measure similarity between the binary hash codes to better preserve similarity relations of the original feature space and improve retrieval precision. To speed computation, bit operation is used to calculate the Euclidean distance between the hash codes. It is 400 times faster than the traditional calculation method of the Euclidean distance for double-bit embedding of 64-bit hash code. Experiments on three image data sets show that the proposed method produces better results than other popular quantization strategies of hashing.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《应用科学学报》
  • 中国科技核心期刊
  • 主管单位:上海市教育委员会
  • 主办单位:上海大学 中国科学院上海技术物理研究所
  • 主编:王延云
  • 地址:上海市上大路99号123信箱
  • 邮编:200444
  • 邮箱:yykxxb@departmenl.shu.edu.cn
  • 电话:021-66131736
  • 国际标准刊号:ISSN:0255-8297
  • 国内统一刊号:ISSN:31-1404/N
  • 邮发代号:4-821
  • 获奖情况:
  • 首届中国高校优秀科技期刊,第2届中国高校优秀科技期刊奖,全国高校优秀科技期刊,中国科技期刊方阵双效期刊,上海市优秀科技期刊,首届《CAJ-CD》执行优秀期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:4747